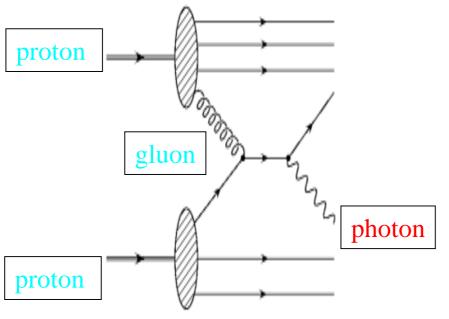
Measurement of the direct photon cross section in proton-proton collisions at s = 200 GeV with PHENIX

Tokyo Institute of Technology/RIKEN Takuma Horaguchi for the PHENIX Collaboration


horaguchi@bnl.gov

Outline

- Physics Motivation
- 2. RHIC-PHENIX
- 3. Method of photon identification
- 4. Isolation-cut method
 - Isolation-cut
 - Reconstructed π^0 and η
 - Evaluate fake photon from π^0 and η
- Direct photon yield
- 6. Summary

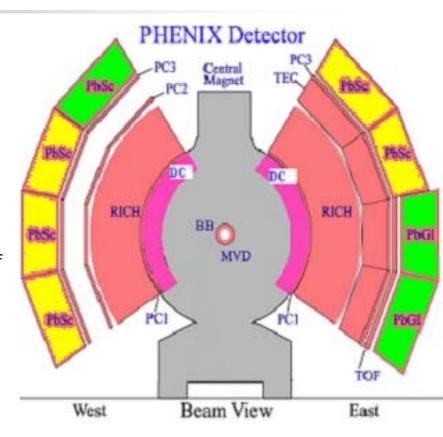
Physics Motivation

Quark-Gluon Compton Scattering

- Measurement of the g(x) (gluon distribution function)
- A test of pQCD
- First step towards the ∆g(x) (polarized gluon distribution function) measurement in polarized p+p collisions
 - Provide a reference for photon measurement in Au+Au collisions

RHIC - PHENIX

RHIC – run 2002 pp run


- Integrated luminosity 0.15pb⁻¹
 - Vertex cut +-30cm
 - 1671M events

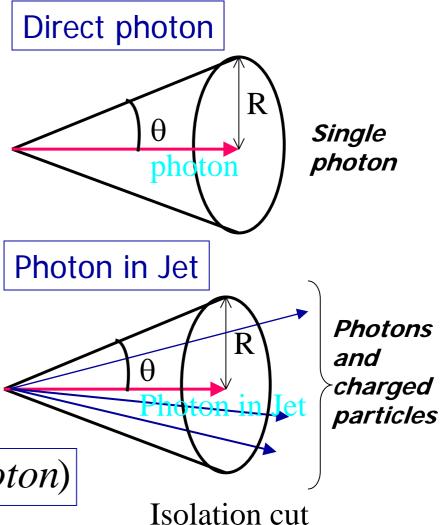
EMCalorimeter (EMCal)

- 2 Arm × 4 sectors
 - Lead Scintillator (PbSc): 6 sectors, size of towers
 5.25 x 5.25 cm²
 - Lead Glass (PbGl) : 2 sectors, size of towers 4.0 x 4.0 cm²
- $|\eta| < 0.38 \ \phi = 180^{\circ}$
- Distance from vertex : ~ 5m

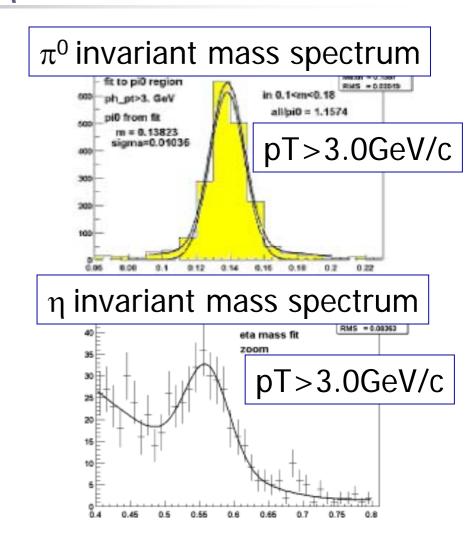
Analysis

- 5 PbSc sectors are used as a fiducial volume.
- 16 towerds from edge are removed
- PC3 are used to remove the charged particles.

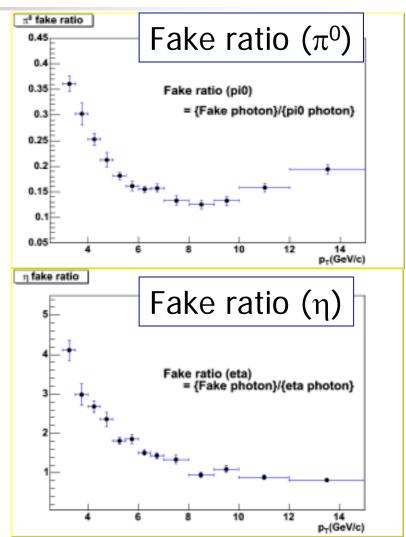
Method of photon identification


- Isolation-cut method isolation-cut + π^0 and η reconstruction
 - Remove photons which don't satisfy the "isolation-cut condition"
 - Reconstruct π^0 and η after the isolation-cut and remove these photons
 - Evaluate "fake" single photons from the π^0 and η decay using a Monte Carlo simulation and subtract these photons
- No isolation-cut method π^0 reconstruction only
 - Reconstruct π^0 and remove these photons
 - Evaluate "fake" single photon from π^0 decays using a Monte Carlo simulation
 - Evaluate photon from η decays assuming that η / π^0 ratio is 0.2 ± 0.05
 - Subtract these photons

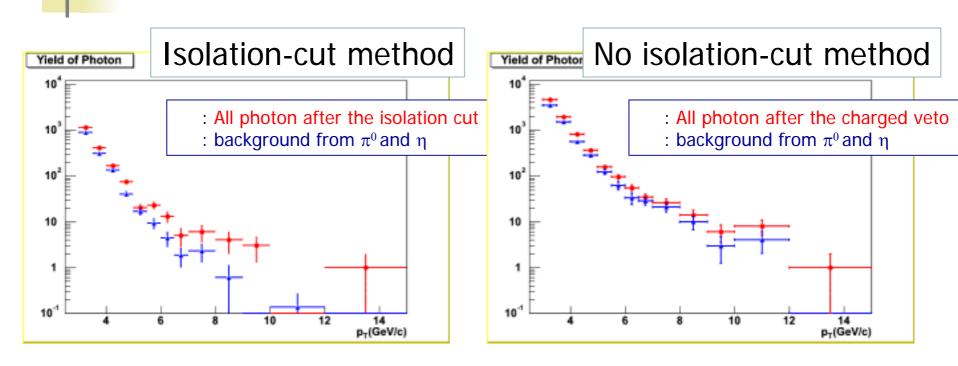
Isolation-cut method


- Calculate following valuables :
 - nR5 = "all EMCal energy deposit within θ <0.5 rad from the photon"
 - cR5 = "sum of all track momentum within θ <0.5 rad from the photon"
- Isolation cut condition:

 $nR5 + cR5 < 0.1 \times pT(photon)$

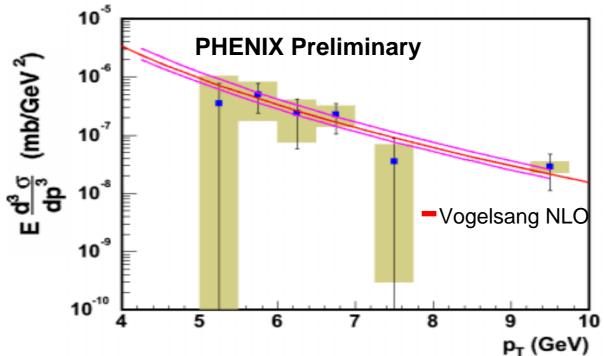

Reconstruct π^0 and η

- The background under pi0 sample (100MeV<M_{γγ}<180MeV) is evaluated as 16%.
- The background under eta sample (480MeV<M_{γγ}<620MeV). is evaluated as 90%.
- The background fraction is used to correct for reconstructed π⁰ and η yield.



Single photon from π^0 and η decay

- Using the Monte Carlo event generator and GEANT detector simulation program.
- Define the fake ratio {fake photon}/{π⁰(η)photon}
- " $\pi^0(\eta)$ photon": photons whose other photon from the same parent $\pi^0(\eta)$ is accepted in the fiducial.
- "Fake photon": photons whose other photon from the same parent $\pi^0(\eta)$ is NOT accepted in the fiducial.



Direct photon yield

There is significant difference between the all photon yield and background from π^0 and η .

PHENIX Preliminary result

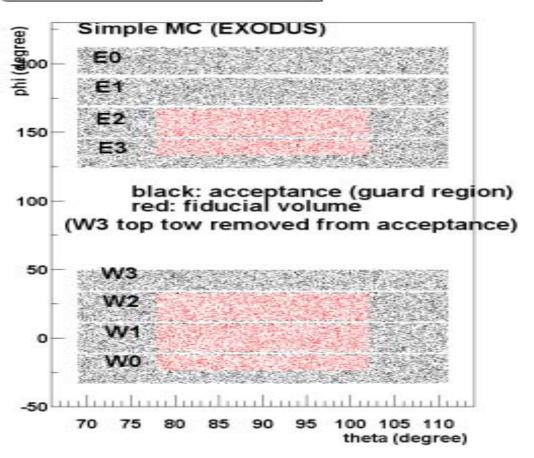
Vogelsang calculation: different scale factors (0.5, 1.0, 2.0), using CTEQ6 gluon pdf: *JHEP 9903 (1999) 025/ private communication*

Summary

- I investigated direct photon yield in proton-proton collisions in Run2002 at s = 200GeV.
- Two different methods are used, one is the isolation-cut method and another one is the no isolation-cut method.
- π^0 and η are reconstructed and evaluated fake ratio from them by Monte Carlo event generator and GEANT detector simulation to subtract background from π^0 and η decay.
- I found photon yield much bigger than π^0 and η in both methods, which indicates existence of direct photon.
- We have collected data with an integrated luminosity of 0.35pb⁻¹ in the Run2003. Now Run2003 data analysis is started, and will provide more statistical result.

Backup slide (1) Isolation-cut method

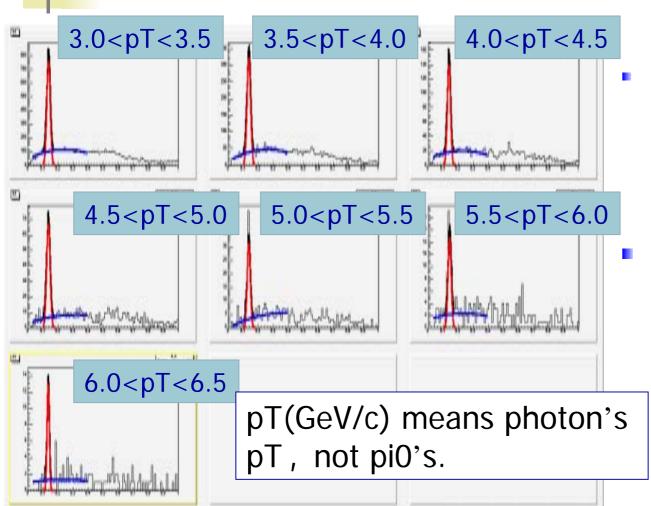
- Calculate following values:
 - N_{all}: Number of all photon in the fiducial volume after the isolation cut
 - N_{ph $\pi 0$}: Number of photon from π^0 decays
 - ightharpoonup
 ig
 - N_{ph} $_{\pi 0}$ reco : Number of photon from reconstructed π^0
 - $N_{ph \eta reco}$: Number of photon from reconstructed η
 - $R_{fake_{\pi 0}}$: ratio of fake single photon from π^0 decays
 - $R_{fake \eta}$: ratio of fake single photon from η decays
 - N_{signal}: Number of direct photon candidates


$$N \, signal = N \, all - N \, ph \, _ \pi \, 0 - N \, ph \, _ \eta$$

$$= N \, all - (1 + R \, fake \, _ \pi \, 0) \, N \, ph \, _ \pi \, 0 \, _ reco$$

$$- (1 + R \, fake \, _ \eta) \, N \, ph \, _ \eta \, _ reco$$

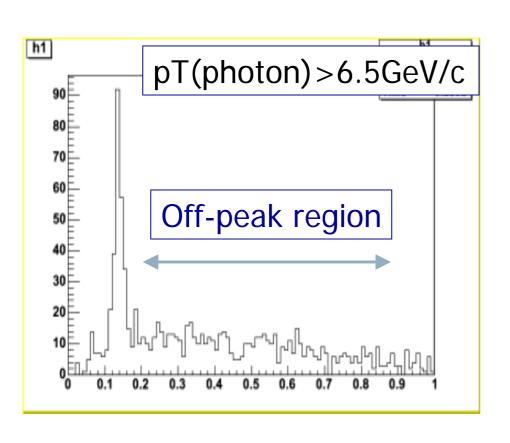
Backup slide (2) Fiducial cut



- Define the fiducial volume in EMCal :
 - 16 EMCalorimeter towers from the edge are removed.
 - 5 sectors (Lead Scintillator) are used.
- All EMCal sectors are used for the isolation-cut and reconstruction of π⁰ and η.

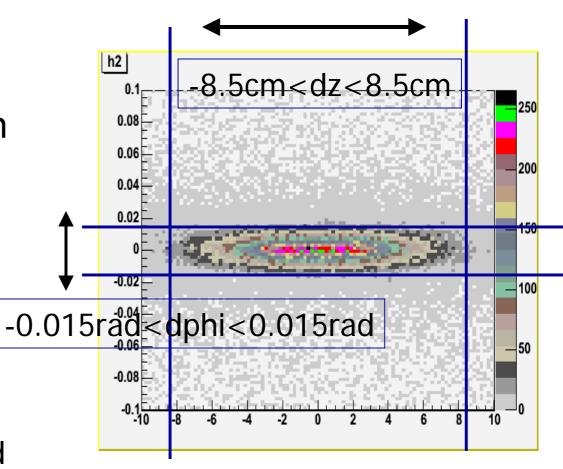
Backup slide (3) No isolation-cut method

- η reconstruction and "fake" evaluation cannot be done
- Calculate following values:
 - N_{all}: Number of all photon in the fiducial volume after the charged veto
 - N_{ph $\pi 0$}: Number of photon from π^0 decays
 - $ightharpoonup N_{ph n}$: Number of photon from η decays
 - N_{ph} $_{\pi 0}$ reco : Number of photon from reconstructed π^0
 - $R_{fake \pi 0}$: ratio of fake single photon from π^0 decays
 - $R_{\eta/\pi 0}$: η/π^0 ratio
 - N_{signal}: Number of direct photon candidates


Backup slide (4) Reconstruct π^0

 π⁰ invariant mass spectrum is fitted using the function as gauss+polynomial.

Photon from reconstructed π⁰ is obtained after background (polynomial curve) subtraction.


Backup slide (5) Reconstruct π^0 at high pT

- We cannot fit at pT>6.5GeV/c, therefore we estimated probability of background using offpeak region.
- Probability of background to signal ~ 38%

Backup slide (6) Remove the charged particles

- This plot shows distance between charged tracks and clusters in EMCal.
- We apply the following cut:
 - |dz| > 8.5 cm
 - |dphi|>0.015 rad

